Pad Attenuator (Pi, Tee, & Bridged-Tee) Calculator

    Inputs

    Z0 Ohms Ω
    Attenuation dB

    Outputs

    Pi Attenuator:
    Tee Attenuator:
    Bridged-Tee Attenuator:

    Formulas Used

    Pi Attenuator Tee Attenuator Bridged-tee Attenuator
    \[ R_1(\Omega) = \] \[ \frac{1}{\frac{(a^2+1)}{Z_0(\Omega) (a^2-1)}-\frac{1}{R_2}} \] \[ Z_0(\Omega)\frac{(a^2+1)}{(a^2-1)}-R_2 \] \[ Z_0(\Omega) \]
    \[ R_2(\Omega) = \] \[ \frac{(a^2 - 1)}{2a}\sqrt{Z_0(\Omega)^2} \] \[ \frac{2a}{(a^2 - 1)}\sqrt{Z_0(\Omega)^2} \] \[ \frac{Z_0(\Omega)}{10^\frac{dB}{20}-1} \]
    \[ R_3(\Omega) = \] \[ \frac{1}{\frac{(a^2+1)}{Z_0(\Omega)(a^2-1)}-\frac{1}{R_2}} \] \[ Z_0(\Omega)\frac{(a^2+1)}{(a^2-1)}-R_2 \] \[ Z_0(\Omega) \]
    \[ R_4(\Omega) = \] \[ Z_0(\Omega) \left[ 10^\frac{dB}{20}-1 \right] \]
    Pi Attenuator
    \[ R_1(\Omega) = \] \[ \frac{1}{\frac{(a^2+1)}{Z_0(\Omega) (a^2-1)}-\frac{1}{R_2}} \]
    \[ R_2(\Omega) = \] \[ \frac{(a^2 - 1)}{2a}\sqrt{Z_0(\Omega)^2} \]
    \[ R_3(\Omega) = \] \[ \frac{1}{\frac{(a^2+1)}{Z_0(\Omega)(a^2-1)}-\frac{1}{R_2}} \]
    Tee Attenuator
    \[ R_1(\Omega) = \] \[ Z_0(\Omega)\frac{(a^2+1)}{(a^2-1)}-R_2 \]
    \[ R_2(\Omega) = \] \[ \frac{2a}{(a^2 - 1)}\sqrt{Z_0(\Omega)^2} \]
    \[ R_3(\Omega) = \] \[ Z_0(\Omega)\frac{(a^2+1)}{(a^2-1)}-R_2 \]
    Bridged-tee Attenuator
    \[ R_1(\Omega) = \] \[ Z_0(\Omega) \]
    \[ R_2(\Omega) = \] \[ \frac{Z_0(\Omega)}{10^\frac{dB}{20}-1} \]
    \[ R_3(\Omega) = \] \[ Z_0(\Omega) \]
    \[ R_4(\Omega) = \] \[ Z_0(\Omega) \left[ 10^\frac{dB}{20}-1 \right] \]
    Disclaimer:

    Qorvo makes no representations or warranties of any kind, express or implied, about the completeness, accuracy, or reliability of the tools on this web page. In no event will Qorvo be liable to any user of these tools for any loss or damages, including without limitation, indirect or consequential damages arising out of or associated with the use of these tools.